[[x1 == 1/3*sqrt(3), x2 == -1/3*sqrt(3), w1 == 1, w2 == 1], [x1 == -1/3*sqrt(3), x2 == 1/3*sqrt(3), w1 == 1, w2 == 1]] [[x1 == 1/3*sqrt(3), x2 == -1/3*sqrt(3), w1 == 1, w2 == 1], [x1 == -1/3*sqrt(3), x2 == 1/3*sqrt(3), w1 == 1, w2 == 1]] |
^C [w1 + w2 + w3 - 2, w1*x1 + w2*x2 + w3*x3, w1*x1^2 + w2*x2^2 + w3*x3^2 - 2/3, w1*x1^3 + w2*x2^3 + w3*x3^3, w1*x1^4 + w2*x2^4 + w3*x3^4 - 2/5, w1*x1^5 + w2*x2^5 + w3*x3^5] __SAGE__ ^C [w1 + w2 + w3 - 2, w1*x1 + w2*x2 + w3*x3, w1*x1^2 + w2*x2^2 + w3*x3^2 - 2/3, w1*x1^3 + w2*x2^3 + w3*x3^3, w1*x1^4 + w2*x2^4 + w3*x3^4 - 2/5, w1*x1^5 + w2*x2^5 + w3*x3^5] __SAGE__ |
The roots of Legendre polynomial of degree 5 [{x: -1/3*sqrt(2/7*sqrt(70) + 5)}, {x: 1/3*sqrt(2/7*sqrt(70) + 5)}, {x: -1/3*sqrt(-2/7*sqrt(70) + 5)}, {x: 1/3*sqrt(-2/7*sqrt(70) + 5)}, {x: 0}] are the roots of P(x) = 63/8*x^5 - 35/4*x^3 + 15/8*x The roots of Legendre polynomial of degree 5 [{x: -1/3*sqrt(2/7*sqrt(70) + 5)}, {x: 1/3*sqrt(2/7*sqrt(70) + 5)}, {x: -1/3*sqrt(-2/7*sqrt(70) + 5)}, {x: 1/3*sqrt(-2/7*sqrt(70) + 5)}, {x: 0}] are the roots of P(x) = 63/8*x^5 - 35/4*x^3 + 15/8*x |
|
The 5th Legendre derivative: yields x-values and quadrature coefficients: The 5th Legendre derivative: yields x-values and quadrature coefficients: |
-1/3*sqrt(2/7*sqrt(70) + 5) 1/3*sqrt(2/7*sqrt(70) + 5) -1/3*sqrt(-2/7*sqrt(70) + 5) 1/3*sqrt(-2/7*sqrt(70) + 5) 0 -1/3*sqrt(2/7*sqrt(70) + 5) 1/3*sqrt(2/7*sqrt(70) + 5) -1/3*sqrt(-2/7*sqrt(70) + 5) 1/3*sqrt(-2/7*sqrt(70) + 5) 0 |
-0.448286680695642 -0.448286680695642 |
|
-0.324801704989511 -0.324801704989511 |
-1.95016278325081 -1.95016278325081 |
|