|
ans = -113 Here are the original vectors -4 -3 -3 2 4 -4 1 -4 1 1 -2 0 2 -4 -1 -1 Now apply Gram-Schmidt -4.000 -4.189 -0.560 -0.288 4.000 -2.811 0.470 -0.604 1.000 1.297 -2.678 -0.249 2.000 -3.405 -0.719 0.757 and after making vectors all unit vectors... -0.658 -0.673 -0.195 -0.276 0.658 -0.452 0.164 -0.580 0.164 0.208 -0.934 -0.239 0.329 -0.547 -0.251 0.728 Check for orthogonality u1 with u2: 0.00000000 u1 with u3: -0.00000000 u1 with u4: 0.00000000 u2 with u3: -0.00000000 u2 with u4: 0.00000000 u3 with u4: -0.00000000 ans = -113 Here are the original vectors -4 -3 -3 2 4 -4 1 -4 1 1 -2 0 2 -4 -1 -1 Now apply Gram-Schmidt -4.000 -4.189 -0.560 -0.288 4.000 -2.811 0.470 -0.604 1.000 1.297 -2.678 -0.249 2.000 -3.405 -0.719 0.757 and after making vectors all unit vectors... -0.658 -0.673 -0.195 -0.276 0.658 -0.452 0.164 -0.580 0.164 0.208 -0.934 -0.239 0.329 -0.547 -0.251 0.728 Check for orthogonality u1 with u2: 0.00000000 u1 with u3: -0.00000000 u1 with u4: 0.00000000 u2 with u3: -0.00000000 u2 with u4: 0.00000000 u3 with u4: -0.00000000 |
R = 6.0828e+00 -1.8084e+00 1.9728e+00 -4.2744e+00 4.4409e-16 6.2233e+00 1.6981e+00 1.0075e+00 -4.4409e-16 -2.2204e-16 2.8679e+00 -7.9447e-01 1.1102e-15 1.3323e-15 3.3307e-16 1.0409e+00 ans = 0.0000e+00 -4.4409e-16 -4.4409e-16 0.0000e+00 -4.4409e-16 -8.8818e-16 -4.4409e-16 0.0000e+00 2.2204e-16 -1.1102e-16 2.2204e-16 0.0000e+00 8.8818e-16 8.8818e-16 3.3307e-16 0.0000e+00 R = 6.0828e+00 -1.8084e+00 1.9728e+00 -4.2744e+00 4.4409e-16 6.2233e+00 1.6981e+00 1.0075e+00 -4.4409e-16 -2.2204e-16 2.8679e+00 -7.9447e-01 1.1102e-15 1.3323e-15 3.3307e-16 1.0409e+00 ans = 0.0000e+00 -4.4409e-16 -4.4409e-16 0.0000e+00 -4.4409e-16 -8.8818e-16 -4.4409e-16 0.0000e+00 2.2204e-16 -1.1102e-16 2.2204e-16 0.0000e+00 8.8818e-16 8.8818e-16 3.3307e-16 0.0000e+00 |
Click to the left again to hide and once more to show the dynamic interactive window |
0 0 |
|
0 0 |
WARNING: Output truncated!full_output.txt A = 2 -3 5 1 4 0 -1 3 2 1 2 3 First we check for existing orthogonality ans = -3 ans = 11 ans = -3 Pick one to start v1 = 2 1 -1 1 Then, remove the part of the second column that is parallel to v1 v2 = -2.1429 4.4286 2.5714 2.4286 Now, remove the parts of the third column that are parallel to v1 and v2 v3 = 1.9572 -1.7782 3.4514 1.3152 And check for orthogonality of all three vectors ans = 0 ans = 6.6613e-16 ans = 4.4409e-16 Finally, let's make all the vectors 'unit vectors' v1 = 0.75593 0.37796 -0.37796 0.37796 v2 = -0.35365 0.73088 0.42438 0.40081 v3 = 0.43086 -0.39146 0.75979 ... -0.37796 0.42438 0.75979 0.37796 0.40081 0.28953 Notice that after this process, the 'A = QR' factorization can be obtained by Q'*A = R R = 2.64575 -1.13389 4.15761 0.00000 6.05923 0.28292 0.00000 -0.00000 4.54249 And we can check our factorization ans = 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 -1.7764e-15 4.4409e-16 -1.1102e-16 -4.4409e-16 -8.8818e-16 0.0000e+00 -4.4409e-16 0.0000e+00 Let's solve a system using Least Squares b = 4 -2 -3 1 mat = 2 -3 5 4 1 4 0 -2 -1 3 2 -3 1 2 3 1 ans = 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 ans = 1.00000 0.00000 0.00000 0.98246 0.00000 1.00000 0.00000 -0.62399 0.00000 0.00000 1.00000 0.11371 x = 0.98246 -0.62399 0.11371 r = -0.40543 -0.48652 -0.37300 0.92438 ans = 1.1810 WARNING: Output truncated!full_output.txt A = 2 -3 5 1 4 0 -1 3 2 1 2 3 First we check for existing orthogonality ans = -3 ans = 11 ans = -3 Pick one to start v1 = 2 1 -1 1 Then, remove the part of the second column that is parallel to v1 v2 = -2.1429 4.4286 2.5714 2.4286 Now, remove the parts of the third column that are parallel to v1 and v2 v3 = 1.9572 -1.7782 3.4514 1.3152 And check for orthogonality of all three vectors ans = 0 ans = 6.6613e-16 ans = 4.4409e-16 Finally, let's make all the vectors 'unit vectors' v1 = 0.75593 0.37796 -0.37796 0.37796 v2 = -0.35365 0.73088 0.42438 0.40081 v3 = 0.43086 -0.39146 0.75979 ... -0.37796 0.42438 0.75979 0.37796 0.40081 0.28953 Notice that after this process, the 'A = QR' factorization can be obtained by Q'*A = R R = 2.64575 -1.13389 4.15761 0.00000 6.05923 0.28292 0.00000 -0.00000 4.54249 And we can check our factorization ans = 0.0000e+00 0.0000e+00 0.0000e+00 0.0000e+00 -1.7764e-15 4.4409e-16 -1.1102e-16 -4.4409e-16 -8.8818e-16 0.0000e+00 -4.4409e-16 0.0000e+00 Let's solve a system using Least Squares b = 4 -2 -3 1 mat = 2 -3 5 4 1 4 0 -2 -1 3 2 -3 1 2 3 1 ans = 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 ans = 1.00000 0.00000 0.00000 0.98246 0.00000 1.00000 0.00000 -0.62399 0.00000 0.00000 1.00000 0.11371 x = 0.98246 -0.62399 0.11371 r = -0.40543 -0.48652 -0.37300 0.92438 ans = 1.1810 |
|