%auto
var('x,y,t,s')
@interact(layout=dict(top=[['M','u'], ['N','v']],
bottom=[['a'],['b'],['xx'],['yy']]))
def _(M=input_box(default=x*y,width=30,label="$M=$"),
N=input_box(default=-y,width=30,label='$N=$'),
u=input_box(default=(sin(t)+1*cos(t)*sin(t)^3)/1,width=30,label='$x(t)=$'),
v=input_box(default=1-cos(t),width=30,label='$y(t)=$'),
a=input_box(default=0,width=10),
b=input_box(default=2*pi,width=10),
xx = range_slider(-5, 5, 1, default=(-2,2), label='x Range'),
yy = range_slider(-5, 5, 1, default=(-1,3), label='y Range')):
dr = [derivative(u,t),derivative(v,t)]
A = (M(x=u,y=v)*dr[0]+N(x=u,y=v)*dr[1]).simplify_trig().simplify()
pretty_print(html('$\int_C <%s'%str(latex(M))+',%s'%str(latex(N))+'> dr =$'))
print
pretty_print(html('$\int_{%s}'%str(latex(a))+'^{%s}'%str(latex(b))+'%s dt$'%str(latex(A))))
line_integral = integrate(A,t,a,b)
pretty_print(html('<h2 align=center>Vector Field Integral = %s</h2>'%str(line_integral)))
G = plot_vector_field((M,N),(x,xx[0],xx[1]),(y,yy[0],yy[1]))
G += parametric_plot([u,v],(t,a,b),thickness='5',color='yellow')
show(G)
|
Click to the left again to hide and once more to show the dynamic interactive window
|