Solving a 3D problem maximization/minimization problem with one constraint using the method of Lagrange Multipliers.
John Travis
Mississippi College
|
|
(Be certain to evaluate each cell--in order--from the top. The results from each active cell should print below the cell.)
Extrema on the boundary may occur at the lagrange points Extrema on the boundary may occur at the lagrange points |
|
|
|
Numerical Approximations to the exact Lagrange solutions: \newcommand{\Bold}[1]{\mathbf{#1}}\left(0.000000000000000, -4.47213595499958\right) \newcommand{\Bold}[1]{\mathbf{#1}}\left(0.000000000000000, 4.47213595499958\right) \newcommand{\Bold}[1]{\mathbf{#1}}\left(-2.01566827545025 - 0.0586392610913160i, 0.335454562851329 - 2.11409790833570i\right) \newcommand{\Bold}[1]{\mathbf{#1}}\left(-2.01566827545025 + 0.0586392610913160i, 0.335454562851330 + 2.11409790833570i\right) \newcommand{\Bold}[1]{\mathbf{#1}}\left(1.94670275820887 - 0.153385864321230i, -0.956144218023746 - 1.87375510628445i\right) \newcommand{\Bold}[1]{\mathbf{#1}}\left(1.94670275820887 + 0.153385864321230i, -0.956144218023745 + 1.87375510628445i\right)
Numerical Approximations to the exact Lagrange solutions: \newcommand{\Bold}[1]{\mathbf{#1}}\left(0.000000000000000, -4.47213595499958\right) \newcommand{\Bold}[1]{\mathbf{#1}}\left(0.000000000000000, 4.47213595499958\right) \newcommand{\Bold}[1]{\mathbf{#1}}\left(-2.01566827545025 - 0.0586392610913160i, 0.335454562851329 - 2.11409790833570i\right) \newcommand{\Bold}[1]{\mathbf{#1}}\left(-2.01566827545025 + 0.0586392610913160i, 0.335454562851330 + 2.11409790833570i\right) \newcommand{\Bold}[1]{\mathbf{#1}}\left(1.94670275820887 - 0.153385864321230i, -0.956144218023746 - 1.87375510628445i\right) \newcommand{\Bold}[1]{\mathbf{#1}}\left(1.94670275820887 + 0.153385864321230i, -0.956144218023745 + 1.87375510628445i\right)
|
|