Draw a directional field to get an idea of what the solution is:
|
#4a. Find approximate values of the solution of the given initial value problem at t = 0.1, 0.2, 0.3, and 0.4 using the Euler method with h = 0.1
0.10 0.2692 0.20 0.4872 0.30 0.6604 0.40 0.7943 0.10 0.2692 0.20 0.4872 0.30 0.6604 0.40 0.7943 |
#4b. Repeat part (a) with h = 0.05. Compare the results with those found in (a).
0.10 0.27092 0.20 0.49003 0.30 0.66403 0.40 0.79847 0.10 0.27092 0.20 0.49003 0.30 0.66403 0.40 0.79847 |
#4c. Repeat part (a) with h = 0.025. Compare the results with those found in (a) and (b).
0.10 0.27131 0.20 0.49069 0.30 0.66487 0.40 0.79942 0.10 0.27131 0.20 0.49069 0.30 0.66487 0.40 0.79942 |
#4d. Find the solution of the given problem and evaluate at t = 0.1, 0.2, 0.3, and 0.4. Compare these values with the results of (a), (b), and (c).
6/5*cos(t) - 6/5*e^(-2*t) + 3/5*sin(t) 6/5*cos(t) - 6/5*e^(-2*t) + 3/5*sin(t) |
0.271428144628150 0.490897436643760 0.665141947634699 0.799729441247987 0.271428144628150 0.490897436643760 0.665141947634699 0.799729441247987 |
|
|