Draw a directional field to get an idea of what the solution is:
|
#4a. Find approximate values of the solution of the given initial value problem at t = 0.1, 0.2, 0.3, and 0.4 using the Euler method with h = 0.1
0.10 0.3000 0.20 0.5385 0.30 0.7248 0.40 0.8665 0.10 0.3000 0.20 0.5385 0.30 0.7248 0.40 0.8665 |
#4b. Repeat part (a) with h = 0.05. Compare the results with those found in (a).
0.10 0.28481 0.20 0.51334 0.30 0.69345 0.40 0.83157 0.10 0.28481 0.20 0.51334 0.30 0.69345 0.40 0.83157 |
#4c. Repeat part (a) with h = 0.025. Compare the results with those found in (a) and (b).
0.10 0.27792 0.20 0.50181 0.30 0.67895 0.40 0.81530 0.10 0.27792 0.20 0.50181 0.30 0.67895 0.40 0.81530 |
#4d. Find the solution of the given problem and evaluate at t = 0.1, 0.2, 0.3, and 0.4. Compare these values with the results of (a), (b), and (c).
6/5*cos(t) - 6/5*e^(-2*t) + 3/5*sin(t) 6/5*cos(t) - 6/5*e^(-2*t) + 3/5*sin(t) |
0.271428144628150 0.490897436643760 0.665141947634699 0.799729441247987 0.271428144628150 0.490897436643760 0.665141947634699 0.799729441247987 |
|
|