Solving Linear Differential Equation Systems using Eigenvalues and Eigenvectors
John Travis
Mississippi College
When solving linear systems of differential equations, the collection of equations can be written in the form
$Y^\prime = A Y$
If one assumes that there are solutions that behave like "straight lines" that pass through the origin in the phase plane, then in a vector form the solution must look something like
$Y = r(t) V$
where $r(t)$ is a monotonic function with range $(-\infty,0)$ or $(0,\infty)$ and $V$ is a "direction" vector.
If we presume $r(t) = c e^{\lambda t}$ then
$A (c e^{\lambda t}V) = A Y = Y^\prime = \lambda c e^{\lambda t}V = \lambda Y$
Cancelling $c e^{\lambda t}$ on both sides gives
$AV = \lambda V $
or
$ 0 = (\lambda I - A)V$
Therefore, the differential equation has a non-trivial straight-line solution of the form $c e^{\lambda t}V$ provided
$\left |{\lambda I - A}\right | = 0$
|
|
(1.162456196701477?, 0, 0, 0, 0) (1.162456196701477?, -2.247383148246649? - 0.1954680715434827?*I, -2.247383148246649? + 0.1954680715434827?*I, 1.666155049895911? - 1.569792375745458?*I, 1.666155049895911? + 1.569792375745458?*I) (1.162456196701477?, 0, 0, 0, 0) (1.162456196701477?, -2.247383148246649? - 0.1954680715434827?*I, -2.247383148246649? + 0.1954680715434827?*I, 1.666155049895911? - 1.569792375745458?*I, 1.666155049895911? + 1.569792375745458?*I) |
|