113 - Topic 05 - Analytic Trigonometry Formulas

100 days ago by Professor113

Analytic Trigonometric Formulas - Derivation

John Travis

Mississippi College

Starting with a unit circle approach, developing all the sum, difference, double angle and half angle formulas.

%hide %auto @interact def _(A = slider(1,3,1/10,1.5,label='Angle $A$'),B = slider(1,3,1/10,1,label='Angle $B$')): if A==B: pretty_print('Formula is not interesting if $A=B$. Make them different!') else: pt0 = (1,0) ptA = (cos(A),sin(A)) ptB = (cos(B),sin(B)) ptAmB = (cos(A-B),sin(A-B)) d1 = (cos(A-B)-1)^2 + sin(A-B)^2 d2 = (cos(A)-cos(B))^2 + (sin(A)-sin(B))^2 G = circle((0,0), 1, edgecolor='blue' ) G += line([(0,0),ptAmB],color='gray')+line([pt0,ptAmB],color='green',thickness=5) G += text(str(d1.n(digits=5)),( (cos(A-B)+1)/2.5, sin(A-B)/2.5),rotation=90+180*atan(sin(A-B)/(cos(A-B)-1))/pi) G += text(str(d2.n(digits=5)),( (cos(A)+cos(B))/2.5, (sin(A)+sin(B))/2.5),rotation=90+180*atan((sin(A)-sin(B))/(cos(A)-cos(B)))/pi) G += text('(1,0)',pt0,fontsize=15,color='red')+text('A-B',ptAmB,fontsize=15,color='red') G += text('A',ptA,fontsize=15,color='red')+text('B',ptB,fontsize=15,color='red') G += line([(0,0),ptA],color='gray')+line([(0,0),ptB],color='gray') G += line([ptA,ptB],color='green',thickness=5) G.show(aspect_ratio=True) pretty_print('Distances for each of the arc segments: %s'%str(d1.n())+' and %s'%str(d2.n())) 
       
Angle $A$ 
Angle $B$ 

Click to the left again to hide and once more to show the dynamic interactive window

%hide reset() var('A,B,C') d1 = sin(A-B)^2 + (cos(A-B)-1)^2 d2 = (sin(A)-sin(B))^2 + (cos(A)-cos(B))^2 equation = d1 == d2 pretty_print(html('Equating the two distances $d_1$ and $d_2$ gives')) equation.show() pretty_print('Expanding the squares on each side gives') equation2 = d1.expand() == d2.expand() equation2.show() pretty_print('Canceling using the Pythagorean identities gives') d1a = (d1+2*cos(A-B)).simplify_trig() d2a = d2.simplify_trig() equation3 = d1a -2*cos(A-B) == d2a equation3.simplify().show() pretty_print('Cancel the leftover $2$s and negatives gives the formula') equation4(A,B) = cos(A-B) == (-d2a/2+1) equation4(A,B).show() 
       
Equating the two distances  and  gives

                                
                            
Equating the two distances  and  gives

                                
%hide pretty_print(html('Replacing $B$ with $-B$ yields the addition formula for cosine') ) equation4(A,-B).show() pretty_print(html('Use the fact at $\sin$ is odd and $\cos$ is even to get the addition formula.')) 
       
Replacing  with  yields the addition formula for cosine
Use the fact at  is odd and  is even to get the addition formula.
                                
                            
Replacing  with  yields the addition formula for cosine
Use the fact at  is odd and  is even to get the addition formula.
                                
%hide pretty_print(html('Using this formula and replacing $A$ with $\pi/2-A$ and $B$ with $-B$ yields')) equation5=equation4(pi/2-A,B) equation5.show() pretty_print(html('The cofunction relationships yield')) equation6(A,B) = sin(A+B) == sin(A)*cos(B)+cos(A)*sin(B) equation6(A,B).show() 
       
Using this formula and replacing  with  and  with  yields
The cofunction relationships yield

                                
                            
Using this formula and replacing  with  and  with  yields
The cofunction relationships yield

                                
%hide pretty_print(html('Replacing $B$ with $-B$ yields')) equation6(A,-B).show() pretty_print(html('Use the fact at $\sin$ is odd and $\cos$ is even to get the subtraction formula.')) 
       
Replacing  with  yields
Use the fact at  is odd and  is even to get the subtraction formula.
                                
                            
Replacing  with  yields
Use the fact at  is odd and  is even to get the subtraction formula.
                                
%hide pretty_print(html('Replacing $A-B$ with $A+A$ yields the double angle formula')) equation6(A,A).show() 
       
Replacing  with  yields the double angle formula

                                
                            
Replacing  with  yields the double angle formula

                                
%hide pretty_print(html('Visually, <font color="blue">$\sin(2A)$</font> is the traditional sine curve compressed horizontally.')) pretty_print(html('Visually, <font color="green">$2\sin(A)$</font> is the traditional sine curve expanded vertically.')) pretty_print(html('By multiplying $2\sin(A)$ by $\cos(A)$ the second curve is given a variable amplitude.')) pretty_print(html('The animation shows what happens as $2\sin(A)$ is increasingly multiplied by $\cos(A)$.')) Slides = [] G = plot(sin(2*x),(x,0,2*pi),color='blue',alpha=0.3)+plot(2*sin(x),(x,0,2*pi),color='green',alpha=0.3) for k in range(1,20): c = cos(k/20*x) H = G + plot(2*sin(x)*c,(x,0,2*pi),color='red') Slides.append(H) animate(Slides).show(delay=20, iterations=0) 
       
Visually,  is the traditional sine curve compressed horizontally.
Visually,  is the traditional sine curve expanded vertically.
By multiplying  by  the second curve is given a variable amplitude.
The animation shows what happens as  is increasingly multiplied by .
                                
                            
Visually,  is the traditional sine curve compressed horizontally.
Visually,  is the traditional sine curve expanded vertically.
By multiplying  by  the second curve is given a variable amplitude.
The animation shows what happens as  is increasingly multiplied by .
                                
%hide pretty_print(html('Using the similar addition formula for $\cos$ but replacing $A+B$ with $A+B$ yields the double angle formula')) equation4(A,-A).show() pretty_print(html('Evenness and oddness gives a first formula for $\cos(2*A)$')) (cos(2*A) == cos(A)^2-sin(A)^2).show() pretty_print(html('Replacing $\sin(A)^2$ with $1-\cos(A)^2$ gives a second formula for $\cos(2*A)$')) (cos(2*A) == 2*cos(A)^2-1).show() pretty_print(html('Instead, replacing $\cos(A)^2$ with $1-\sin(A)^2$ gives a third formula for $\cos(2*A)$')) (cos(2*A) == 1-2*sin(A)^2).show() 
       
Using the similar addition formula for  but replacing  with  yields the double angle formula
Evenness and oddness gives a first formula for 
Replacing  with  gives a second formula for 
Instead, replacing  with  gives a third formula for 

                                
                            
Using the similar addition formula for  but replacing  with  yields the double angle formula
Evenness and oddness gives a first formula for 
Replacing  with  gives a second formula for 
Instead, replacing  with  gives a third formula for 

                                
%hide pretty_print(html('Compare the equality of the last two forms for $\cos(2A)$:\n')) pretty_print(html('Graph <font color="green">$\sin^2(A)$</font> and then flip and stretch vertically.')) pretty_print(html('Graph <font color="blue">$\cos^2(A)$</font> and then stretch vertically.')) pretty_print(html('Finally translate blue down $1$ and green up $1$')) Slides = [] G = plot(cos(x)^2,(x,0,2*pi),color='blue',alpha=0.4) H = plot(sin(x)^2,(x,0,2*pi),color='green',alpha=0.4) for k in range(1,10): flip = (5-k)/5 Slides.append(G+H+plot(flip*sin(x)^2,(x,0,2*pi),color='green')) Slides.append(G+H+plot(-1*sin(x)^2,(x,0,2*pi),color='green')) for k in range(1,10): r = k/10 Slides.append(G+H+plot((-1-r)*sin(x)^2,(x,0,2*pi),color='green')) H1 = plot(-2*sin(x)^2,(x,0,2*pi),color='green') Slides.append(G+H+H1) for k in range(1,11): r = k/10 Slides.append(G+H+H1+plot((1+r)*cos(x)^2,(x,0,2*pi),color='blue')) for k in range(1,10): r = k/10 Slides.append(G+H+plot(2*cos(x)^2-r,(x,0,2*pi),color='blue')+plot(r-2*sin(x)^2,(x,0,2*pi),color='green')) G += plot(2*cos(x)^2-1,(x,0,2*pi),color='red') Slides.append(G+H) animate(Slides).show(delay=30, iterations=3) 
       
Compare the equality of the last two forms for :
Graph  and then flip and stretch vertically.
Graph  and then stretch vertically.
Finally translate blue down  and green up 
                                
                            
Compare the equality of the last two forms for :
Graph  and then flip and stretch vertically.
Graph  and then stretch vertically.
Finally translate blue down  and green up 
                                
# Trying to save animation to a file for quicker use later. #dir = tmp_dir() + '/' #Slides.gif(savefile=dir + 'my_animation.gif', show_path=True) #Slides.ffmpeg(savefile=dir + 'new.mpg', show_path=True) 
       
%hide solns(A) = solve((cos(2*A) == 1-2*sin(A)^2),sin(A)) html('Using the <i>second</i> formula but solving for $\sin(A)$ gives') solns(A)[0].show() html('or') solns(A)[1].show() html('Replacing $A$ with $A/2$ (using the $+$ formula) gives $\sin(A/2)$') solns(A/2)[0].show() 
       

                                
                            

                                
%hide html('Visually verify the half-angle formula for $\sin(A/2)$:\n') html('Graph <font color="green">$\sin(A)$</font> and then stretch horizontally for a period of $4\pi$ to get $\sin(A/2)$.') html('Graph <font color="blue">$- \cos(A)$</font>, up one, compress by half and then square root.') html('Notice that the graphs agree for half the time and are negatives of each other for the other half. This reflects the $\pm$ formulas.') Slides = [] G = plot(-1*cos(x),(x,0,4*pi),color='blue',alpha=0.3) H = plot(sin(x),(x,0,2*pi),color='green',alpha=0.3) for k in range(1,10): r = k/10 Slides.append(G+H+plot(sin(x/(1+r)),(x,0,4*pi),color='green')) H += plot(sin(x/2),(x,0,4*pi),color='green') Slides.append(G+H) for k in range(1,10): r = k/10 Slides.append(G+H+plot(r-cos(x),(x,0,4*pi),color='blue')) for k in range(1,11): r = k/10 Slides.append(G+H+plot((1-cos(x))/(1+r),(x,0,4*pi),color='blue')) for k in range(1,5): r = k/10 Slides.append(G+H+plot(((1-cos(x))/2)^(1-r),(x,0,4*pi),color='blue')) G += plot(sqrt((1-cos(x))/2),(x,0,4*pi),color='blue') Slides.append(G+H) #G += plot(plot(((1-cos(x))/2)^0.5,(x,0,4*pi),color='blue') #Slides.append(G+H) animate(Slides).show(delay=30, iterations=3) 
       
%hide solns(A) = solve((cos(2*A) == 2*cos(A)^2-1),cos(A)) html('Using the <i>third</i> formula but solving for $\cos(A)$ gives') solns(A)[0].show() html('or') solns(A)[1].show() html('Replacing $A$ with $A/2$ (using the $+$ formula) gives $\cos(A/2)$') solns(A/2)[0].show()