381 - A9 - Piecewise Hermite Interpolation

462 days ago by Professor381

# Consider two quadratics that meet at a middle point x1 = -2 y1 = 3 x2 = -1 y2 = 1 x3 = 0 y3 = 2 x4 = 3 y4 = -1 x5 = 4 y5 = 0 p1 = y1*(x-x2)*(x-x3)/((x1-x2)*(x1-x3)) + y2*(x-x1)*(x-x3)/((x2-x1)*(x2-x3)) + y3*(x-x1)*(x-x2)/((x3-x1)*(x3-x2)) # using Basis approach p2 = y3*(x-x4)*(x-x5)/((x3-x4)*(x3-x5)) + y4*(x-x3)*(x-x5)/((x4-x3)*(x4-x5)) + y5*(x-x3)*(x-x4)/((x5-x3)*(x5-x4)) # using Basis approach G = point([(x1,y1),(x2,y2),(x3,y3),(x4,y4),(x5,y5)],size=20) G += plot(p1,(x,x1,x3),color='red') + plot(p2,(x,x3,x5),color='orange') show(G) 
       

It would be nice if where the curves met that the slopes also met.  Unfortunately, there is no more "freedom" in choosing the quadratics.  Need more coefficients to pick.

# This cell in Sage mode var('u') H0 = (1-u)^2*(1+2*u) H1 = (1-u)^2*u H2 = (u-1)*u^2 H3 = (3-2*u)*u^2 G = plot(H0,(u,0,1),color='black')+plot(H1,(u,0,1),color='red')+plot(H2,(u,0,1),color='green')+plot(H3,(u,0,1),color='blue') show(G,aspect_ratio=1) show(H0) show(H1) show(H2) show(H3) 
       

                                
                            

                                

The rest of this is in octave mode

function y = H0(u) y = (1-u) .^2 .* (1+2*u); end function y = H1(u) y = (1-u) .^2 .*u; end function y = H2(u) y = (u-1) .* u .^2; end function y = H3(u) y = (3-2 .*u) .* u .^2; end n = 4; x = [-1 2 4 7 13]; y = [5 4.5 2 3 0]; m = [-1 -1 -1 -1 -2]; for k = 2:n+1 xx = x(k-1):0.05:x(k); delx = x(k)-x(k-1); yy = H0( (xx-x(k-1))/delx )*y(k-1) + H1( (xx-x(k-1))/delx )*m(k-1)*delx + H2( (xx-x(k-1))/delx )*m(k)*delx + H3( (xx-x(k-1))/delx )*y(k); plot(xx,yy) hold on end plot(x,y,'rd') 
       
                                                                        

 6
|-----------------------------------------------------------------------\
|   
   |                *****              +                 +              
|   
   |              ***   **                                              
|   
 5 |-+           L%      **                                             
+-|   
   |              %%%%%%%%%%                                            
|   
   |                %%     *L@                                          
|   
   |                        *@                                          
|   
 4 |-+                      ##@                                         
+-|   
   |                         # @       $$$$$$                           
|   
   |                         # @@    $$     &&                  
|   
 3 |-+                       ## @@ $$     &&&&L=        
+-|   
   |                          #  @@$     &&    ==               
|   
   |                          ## $@@    &&      =====    =      
|   
 2 |-+                         #$$ L&  &&          
===========          +-|   
   |                                &&&                     
==           |   
   |                                                            ==      
|   
   |                                                             =      
|   
 1 |-+                                                            =     
+-|   
   |                                                              ==    
|   
   |                 +                 +                 +         =    
|   
 0
|-----------------------------------------------------------------------\
|   
  -5                 0                 5                10              
15   
                                                                        
                                                                               
 6 |-----------------------------------------------------------------------|   
   |                *****              +                 +                 |   
   |              ***   **                                                 |   
 5 |-+           L%      **                                              +-|   
   |              %%%%%%%%%%                                               |   
   |                %%     *L@                                             |   
   |                        *@                                             |   
 4 |-+                      ##@                                          +-|   
   |                         # @       $$$$$$                              |   
   |                         # @@    $$     &&                             |   
 3 |-+                       ## @@ $$     &&&&L=                         +-|   
   |                          #  @@$     &&    ==                          |   
   |                          ## $@@    &&      =====    =                 |   
 2 |-+                         #$$ L&  &&           ===========          +-|   
   |                                &&&                       ==           |   
   |                                                            ==         |   
   |                                                             =         |   
 1 |-+                                                            =      +-|   
   |                                                              ==       |   
   |                 +                 +                 +         =       |   
 0 |-----------------------------------------------------------------------|   
  -5                 0                 5                10                15   
                                                                               

Here is a parametric version of above.  Notice the use of sign to make the slopes match graphical reality.

function y = H0(u) y = (1-u) .^2 .* (1+2*u); end function y = H1(u) y = (1-u) .^2 .*u; end function y = H2(u) y = (u-1) .* u .^2; end function y = H3(u) y = (3-2 .*u) .* u .^2; end n = 4; t = [0 1 2 4 7]; x = [4 2 1.5 1 4]; y = [5 4.5 4 3 0]; run = [1 1 0 0 1]; rise = [-1 1 1 -1 -2]; for k = 2:n+1 tt = t(k-1):0.05:t(k); delt = t(k)-t(k-1); xx = H0( (tt-t(k-1))/delt )*x(k-1) + H1( (tt-t(k-1))/delt )*run(k-1)*delt*sign(x(k)-x(k-1)) + H2( (tt-t(k-1))/delt )*run(k)*delt*sign(x(k)-x(k-1)) + H3( (tt-t(k-1))/delt )*x(k); yy = H0( (tt-t(k-1))/delt )*y(k-1) + H1( (tt-t(k-1))/delt )*rise(k-1)*delt*sign(y(k)-y(k-1)) + H2( (tt-t(k-1))/delt )*rise(k)*delt*sign(x(k)-x(k-1)) + H3( (tt-t(k-1))/delt )*y(k); plot(xx,yy) hold on end plot(x,y,'rd') 
       
                                                                        

 6
|-----------------------------------------------------------------------\
|   
   |           +           +           +           +           +        
|   
   |                                                                    
|   
 5 |-+                                       
*****************************|   
   |                           ***************                          
|   
   |                   ####L***                                         
|   
   |           ########                                                 
|   
 4 |-+         L                                                        
+-|   
   |         $$                                                         
|   
   |%%%%%%%%%%%                                                         
|   
 3 |-+ $$$$    %%%%%%%%%%%                                              
+-|   
   |$$$$                  %%%%%%%                                       
|   
   |                             %%%%%%                                 
|   
 2 |-+                                 %%%%%%%                          
+-|   
   |                                          %%%%                      
|   
   |                                              %%%%%%%               
|   
   |                                                     %%%%           
|   
 1 |-+                                                       %%%%%      
+-|   
   |                                                              %%%%  
|   
   |           +           +           +           +           +     
%%%% |   
 0
|-----------------------------------------------------------------------\
|   
   1          1.5          2          2.5          3          3.5       
4   
                                                                        
                                                                               
 6 |-----------------------------------------------------------------------|   
   |           +           +           +           +           +           |   
   |                                                                       |   
 5 |-+                                        *****************************|   
   |                           ***************                             |   
   |                   ####L***                                            |   
   |           ########                                                    |   
 4 |-+         L                                                         +-|   
   |         $$                                                            |   
   |%%%%%%%%%%%                                                            |   
 3 |-+ $$$$    %%%%%%%%%%%                                               +-|   
   |$$$$                  %%%%%%%                                          |   
   |                             %%%%%%                                    |   
 2 |-+                                 %%%%%%%                           +-|   
   |                                          %%%%                         |   
   |                                              %%%%%%%                  |   
   |                                                     %%%%              |   
 1 |-+                                                       %%%%%       +-|   
   |                                                              %%%%     |   
   |           +           +           +           +           +      %%%% |   
 0 |-----------------------------------------------------------------------|   
   1          1.5          2          2.5          3          3.5          4